Minimal Models for 2-coverings of Elliptic Curves

نویسندگان

  • MICHAEL STOLL
  • JOHN E. CREMONA
چکیده

This paper concerns the existence and algorithmic determination of minimal models for curves of genus 1, given by equations of the form y = Q(x) where Q(x) has degree 4. These models are used in the method of 2-descent for computing the rank of an elliptic curve. Our results are complete for unramified extensions ofQ2 and Q3 and for all p-adic fields for p > 5. Our primary motivation is to complete the results of Birch and Swinnerton-Dyer [2], which are incomplete in the case of Q2. Our results in this case (when applied to 2-coverings of elliptic curves over Q) yield substantial improvements in the running times of the 2-descent algorithm implemented in the program mwrank [5]. The paper ends with a section on implementation and examples, and an appendix gives constructive proofs in sufficient detail to be used for implementation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 2 A ug 2 00 9 MINIMISATION AND REDUCTION OF 2 - , 3 - AND 4 - COVERINGS OF ELLIPTIC CURVES

In this paper we consider models for genus one curves of degree n for n = 2, 3 and 4, which arise in explicit n-descent on elliptic curves. We prove theorems on the existence of minimal models with the same invariants as the minimal model of the Jacobian elliptic curve and provide simple algorithms for minimising a given model, valid over general number fields. Finally, for genus one models def...

متن کامل

Minimisation and Reduction of 2-, 3- and 4-coverings of Elliptic Curves

In this paper we consider models for genus one curves of degree n for n = 2, 3 and 4, which arise in explicit n-descent on elliptic curves. We prove theorems on the existence of minimal models with the same invariants as the minimal model of the Jacobian elliptic curve and provide simple algorithms for minimising a given model, valid over general number fields. Finally, for genus one models def...

متن کامل

Elliptic curves with weak coverings over cubic extensions of finite fields with odd characteristic

In this paper, we present a classification of elliptic curves defined over a cubic extension of a finite field with odd characteristic which have coverings over the finite field therefore subjected to the GHS attack. The densities of these weak curves, with hyperelliptic and non-hyperelliptic coverings, are then analyzed respectively. In particular, we show, for elliptic curves defined by Legen...

متن کامل

Algebraic description of Jacobians isogeneous to certain Prym varieties with polarization (1,2)∗

For a class of non-hyperelliptic genus 3 curves C which are 2-fold coverings of elliptic curves E, we give an explicit algebraic description of all birationally nonequivalent genus 2 curves whose Jacobians are degree 2 isogeneous to the Prym varieties associated to such coverings. Our description is based on previous studies of Prym varieties with polarization (1,2) in connection with separatio...

متن کامل

Elliptic curves with weak coverings over cubic extensions of finite fields with odd characteristics

In this paper, we present a classification of classes of elliptic curves defined over cubic extension of finite fields with odd characteristics, which have coverings over the finite fields therefore can be attacked by the GHS attack. We then show the density of these weak curves with hyperelliptic and non-hyperelliptic coverings respectively. In particular, we shown for elliptic curves defined ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002